HKS Short Cup Component

HKS Photo

FEATURES

- Zero backlash
- Precise positional accuracy
- High ratio
- High torque
- > +/- 5 arc second repeatability
- \triangleright

LOADING ANALYSIS

Normal operating conditions involve momentary peak torques substantially higher than constant speed running torques. These peak torques must be carefully considered when selecting a Harmonic Drive HKS Gear Set.

To select from the ratings table it is necessary to construct or estimate a torque speed profile diagram as in Figures 1 and 2.

Maximum Starting Torque, T1

The torque required to accelerate the driven components from rest to normal continuous running speed.

Normal Constant Speed Torque, T2

Normal Maximum Stopping Torque, T3

Maximum Momentary Torque, T4

The peak torque generated by sudden shock loads such as emergency stops or crashes. Particularly severe conditions exist with high output inertias and stringent rapid stop requirements.

Mean Torque, T

Calculate the mean torque.

$$T = 3 \underbrace{\frac{t_1 N_1 T_1^3 + t_2 N_2 T_2^3 + t_3 N_3 T_3^3}{t_1 N_1 + t_2 N_2 + t_3 N_3}}_{T_1 N_1 + t_2 N_2 + t_3 N_3}$$

Mean Speed, N

Calculate the mean speed

$$N = -\frac{t_1 N_1 + t_2 N_2 + t_3 N_3}{t_1 + t_2 + t_3}$$

Speed Profile (fig.2)

HKS SPECIFICATIONS

HKS		Maxi	mum	Maxi	mum	INPUT SPEED											
Size	Ratio	Repe Out	ated put	Mome Out Tor	entary put que	1000	RPM	1500	RPM	2000	RPM	3000	RPM	No L Star	oad ting tue	Inpu	ıt 'ia
			440		que		RATED OUTPUT TORQUE						140	mert	.14		
		lb in	Nm	lb in	Nm	lb in	Nm	lb in	Nm	lb in	Nm	lb in	Nm	oz in	Ncm	lb in²	kgcm ²
14	50	160	18	310	35	73	8	63	7	58	7	50	6	5	4		
	80	200	23	416	47	105	10	02	10	02	0	72	0	3	2	0.01	0.03
	100	250	28	478	54	105	ΙZ	92	10	03	9	/3	0	3	2		
17	50	301	34	620	70	179	20	156	18	142	16	124	14	7	5		
	80	380	43	770	87	246	28	214	24	195	22	170	19	4.3	3	0.027	0.08
	100	470	54	760	86	267	30	233	26	212	24	185	21	4.3	3		
20	50	500	57	867	08	270	31	2/13	28	221	25	103	22	0	6		
20	80	650	73	112/	127	370	/13	243	37	301	3/	263	30	6	1		
	100	725	82	1124	127	577	43	551	57	301	54	203	- 50	5	4	0.07 0	0.19
	120	770	87	1300	147	446	50	390	44	354	40	309	35	5	4	0.07	0.17
	160	812	92	1000		110	00	070		001	10	007	00	4	3		
		0.2	,1														
25	50	870	98	1646	186	435	49	380	43	345	39	302	34	17	12		
	80	1215	137	2257	255	702	79	614	69	558	63	487	55	11	8		
	100	1400	158	2514	284									10	7	0.14	0.41
	120	1480	167	2691	304	747	84	653	74	593	67	518	59	9	6		
	160	1560	176	2779	314									8	6		
32	50	1910	216	3381	382	847	96	740	84	673	76	588	66	40	28		
	80	2700	305	5027	568	1315	149	1149	130	1044	118	912	103	24	17		
	100	2950	333	5726	647									21	15	0.58	1.70
	120	3125	353	6072	686	1527	173	1334	151	1212	137	1059	120	20	14		
	160	3290	372											1/	12		
	FO	2540	200	4072	404	1527	172	1224	151	1212	127	1050	120	42	4.4		
40	80	1500	510	8674	000	2204	250	2006	227	1822	206	1502	120	40	28		
	100	5030	568	9559	1080	2951	237	2581	247	23/15	265	20/10	232	37	20	1 5/	4 50
	120	5460	617	/33/	1000	2754	554	2301	212	2343	205	2047	252	35	25	1.54	4.50
	160	5730	647	10444	1180	3277	370	2863	324	2602	294	2273	257	30	21		

Maximum Repeated Output Torque

This is the maximum allowable output torque that should be developed with dynamic torque at the input. Repetitive momentary or continuous running loads (T1, T2, and T3) should not exceed this rating.

Max Momentary Output Torque

Such torques typically occur during severe emergency stop conditions or by "crashing" the output drive during rotation. This does not result in immediate failure of the gear set but causes poor performance and premature failure of the gear teeth and should, therefore, be avoided.

Maximum Input Speed

The maximum input speed for a Harmonic Drive Gear Set is limited by the DN value of the wave generator bearing and the type of lubricant used. Maximum input speeds for each size unit using recommended grease or oil lubricant are listed in the table.

Maximum Input Speed (rpm)							
Size	14	17	20	25	32	40	
Oil	12000	11600	11200	9000	7000	5600	
Grease	6000	5800	5600	4500	3500	2800	

Ratings and Operating Life

The operating life expectancy of HKS Gear Sets is based on the life of the ball bearings used for the input wave generator when run continuously at rated torque. If gear sets are properly mounted and lubricated, gear tooth life will be well in excess of bearing life, provided maximum torque and speed limits are not exceeded. Flexspline life is infinite provided concentricity requirements are maintained. Ratings listed are for a continuous L10 life of 7000 hours. Average life, however, is 5 times this number.

Torque ratings for speeds other than those listed can be calculated by the following equations:

Rating @ N RPM= $\left[\frac{2000}{N}\right]^{\frac{1}{3}}$ x [listed rating @ 2000 RPM]

and predicted life by

$$L_{10} = \left(\frac{2000}{N}\right) \left[\frac{\text{listed rating @ 2000 RPM}}{T}\right]^3 \times 3000 \text{ hours}$$

Where T = mean torque and N = mean speed

Back Driving/Reversibility

HKS Gear Sets are **NOT** self-locking. They are reversible and cannot, therefore, be used to hold a load in position without the addition of a brake.

DIMENSIONS (mm)

HKS		14	17	20	25	32	40
ØA (h6)		50 ^{-0.016}	60 ^{-0.019}	70 ^{-0.019}	85 ^{-0.019}	110 ^{-0.022}	135 ^{-0.025}
В		28.5 _{-0.8}	32.5 _{-0.9}	33.5 _{-0.1}	37 _{-0.1}	44-0.1	52.8 ^{-0.1}
C ₁		17.5 ⁻⁰	20-0	21.5 ⁻⁰	24 ⁻⁰	28-0	34-0
C ₂		11	12.5	12	13	16	18.8
D		2.4	3	3	3	3.2	3.2
D_2		2.4	2.5	3	5	7	7.1
E		2	2.5	3	3	3	4
F		6	6.5	7.5	10	14	17
Н		17.6 ^{-0.1}	19.5 ^{-0.1}	20.1 ^{-0.1}	20.2 ^{-0.1}	22 ^{-0.1}	28 ^{-0.1}
ØI (h6)		38-0.016	48-0.016	54 ^{-0.019}	67 ^{-0.019}	90-0.022	110 ^{-0.023}
ØJ		23	27.2	32	40	52	64
ØK (H6)		11 ⁻⁰	10 ⁻⁰	16 ⁻⁰	20 ⁻⁰	26-0	32-0
L		6	12	12	12	12	12
ØМ		3.5	3.4	3.5	4.5	5.5	6.5
ØQ(PCD)		44	54	62	75	100	120
R		6	6	8	8	8	8
ØS		4.5	5.5	5.5	6.5	9	11
ØT(PCD)		17	19	24	30	40	50
ØU		14	18	21	26	26	32
ØV (H7)		6-0	8-0	9 -0	11 ⁻⁰	14-0	14-0
W (J _S 9)				3 <u>+</u> 0.0125	4 <u>+</u> 0.015	5 <u>+</u> 0.015	5 <u>+</u> 0.015
Х				10.4	12.8	16.3	16.3
Y		M3	M3				
Z		2.5	3				
MINIMUM	Øa	36	45	53	66	86	106
HOUSING	b	17.1	19	20.5	23	26.8	33
CLEARANCE	с	1	1	1.5	1.5	1.5	2.5
аа		0.019	0.019	0.019	0.022	0.022	0.025
bb		0.014	0.014	0.014	0.018	0.022	0.025
сс		0.013	0.013	0.013	0.014	0.016	0.016
dd		0.020	0.020	0.020	0.024	0.024	0.025
ee		0.044	0.044	0.044	0.047	0.050	0.050
Weight (kaf)		0.09	0.15	0.28	0.42	0.89	17

ALTERNATE HUB STYLE HKS 14 & 17

All dimensions and tolerances are shown with the gear set in its assembled and mounted condition.

Maintain the recommended tolerances for optimum performance.

Dimensions are for reference only and may be subject to revisions.

Contact factory for installation drawing.

Visit us at harmonic-drive.com for technical information.

All dimensions are in mm.

INSTALLATION

Flexspline Support

The flexspline must be connected to a bearing-supported shaft or fixed rotationally. Overhung loads from an external source require a suitable two-bearing support or cross roller bearing to maintain required tolerances.

Circular Spline

The circular spline may be located either in its outside diameter or on the pilot diameter provided. Vibration may occur if the housing is allowed to distort the circular spline from roundness.

Wave Generator

The standard wave generator is provided with an Oldham coupling to allow for misalignment of the input drive. The wave generator bearing is not designed to support a shaft. Additional bearing support should be provided.

ALIGNMENT AND ASSEMBLY

To achieve proper performance from Harmonic Drive Gear Sets, certain mounting and alignment requirements are necessary. Dimensions and tolerances marked 2 establish interface and installation requirements and must be adhered to under all load conditions.

Excessive deflection or improper alignment will affect the smoothness of motion or cause premature failure. All components must be restrained axially, including the wave generator which has a tendency to "walk" into the flexspline cup during operation.

Use high-strength alloy steel screws tightened to manufacturer's recommended torque specifications. Loctite or some other means to prevent loosening is also recommended.

TORSIONAL SPRING RATE

For most purposes, the torsional spring rate of (HKS) can be illustrated by a graph with two distinct slopes A and B $\,$

A low torque applied to the out put creates a nonlinear deflection shown in slope A. This is sometimes referred to as "soft windup" and is dependent upon the clearance between the flexspline and the wave generator bearing race and the diametral clearance of the bearing. Stiffness is shown in charts 1 and 2 below.

CHART 1 50:1 RATIO

шис	SLO	PE A	TORQUE R	ANGE T _s	SLOPE B		
SIZE	lb in/rad	Nm/rad	lb in	Nm	۳ lb in/rad	Nm/rad	
14	29800	3366	8	2	41600	4700	
17	71700	8100	35.4	4	95600	10800	
20	115000	13000	62	7	159300	18000	
25	2.2 X 10⁵	2.5 X 10 ⁴	124	14	3.0 X 10 ⁵	3.4 X 10 ⁴	
32	4.7 X 10⁵	5.3 X 10 ⁴	257	29	6.9 X 10 ⁵	7.8 X 10 ⁴	
40	8.9 X 10 ⁵	1.0 X 10 ⁵	478	54	1.24 X 10 ⁶	1.4 X 10 ⁵	

CHART 2 OVER 50:1 RATIO

шис	SLOF	PE A	TORQUE	RANGE T _s	SLOPE B		
SIZE	lb in/rad	Nm/rad	lb in	Nm	lb in/rad	Z Nm/rad	
14	41780	4720	18	2	54000	6100	
17	89400	10100	35.4	4	119500	13500	
20	141000	16000	62	7	1.6 X 10 ⁵	25000	
25	2.8 X 10 ⁵	3.5 X 10 ⁴	124	14	4.4 X 10 ⁵	5 X 10 ⁴	
32	5.9 X 10 ⁵	6.7 X 10 ⁴	257	29	9.7 X 10 ⁶	1.1 X 10 ⁵	
40	1.15 X 10 ⁶	1.3 X 10 ⁵	478	54	1.8 X 10 ⁶	2.0 X 10 ⁵	

ACCURACY

HKS Size	Positional Error	Hysteresis	Lost Motion
14	<60 arc sec	<1arc min	<1arc min
17	<60 arc sec	<1arc min	<1arc min
20	<40 arc sec	<1arc min	<1arc min
25	<40 arc sec	<1arc min	<1arc min
32	<40 arc sec	<1arc min	<1arc min
40	<40 arc sec	<1arc min	<1arc min

The Torsional spring rates shown in charts 1 & 2 are measured by applying a torque to the output with the input fixed.

To calculate the maximum angular deflection on an HKS Short Cup Gear Set for an output torque, T, use the following equation:

Radians = $\frac{T_s}{R_1} + \frac{[T-T_s]}{R_2}$ See Chart 1 & 2 for T_s

EFFICIENCY

The efficiency of HKS Gear Sets varies with speed, ratio, lubrication, and temperature. The following graphs show the approximate measured values of efficiency against percentage of rated torque. These values can be adjusted by a temperature factor; however, extremes of temperature or excessively low loading should be referred to our Engineering Department.

Harmonic Drive Technologies...

Heavy Duty Precision Reducers

High Precision Gearheads and

High Vaccuum Feed Through and Actuators

Miniature Precision Gearheads and Actuators

Actuators

Precision Motion Control Solutions

Harmonic Drive Technologies, a subsidiary of Teijin Seiki Company of Tokyo, Japan, is a world leader in the design, development and manufacturing of zero-backlash, high ratio harmonic drive gearing technology. Founded in 1955, Harmonic Drive Technologies operates from a state of the art, 34,000 square foot manufacturing facility headquartered in Peabody, Massachusetts. Industries benefiting from our wide product offerings include robotics, machine tool, aerospace, and semiconductor.

Precision gears, gearheads, and actuators from Harmonic Drive Technologies meet the needs of demanding motion control applications requiring precise positional accuracy and repeatability. Units are capable of accuracies better than 1 arc minute, repeatability of +/- 5 arc seconds and transmit high torque loads (up to 30,000 inch pounds) for their compact size. Both standard and customer specific units are available with ratios from 50:1.

Harmonic Drive Technologies Nabtesco, Inc 247 Lynnfield Street Peabody, MA 01960 Tel: 800-921-3332 Fax: 978-532-9406 Teijin Seiki Company Ltd 3-3-1 Nishishimbashi Minato-Ku Tokyo, 105-8628 JAPAN Tel: 978-532-1800 Fax: 978-532-9406 Made in the USA ISO 9001 Certified

Teijin Seiki Europe Gmbh Klosterstrasse 49 40211 Düsseldorf Germany Tel: 978-532-1800 Fax: 978-532-9406

Harmonic Drives • RV Drives

For more information contact Harmonic Drive Technologies at (800)921-3332 • Fax (978)532-9406 • www.harmonic-drive.com